Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Intensive Care ; 11(1): 18, 2023 May 10.
Article in English | MEDLINE | ID: covidwho-2323544

ABSTRACT

BACKGROUND: High-flow nasal cannula (HFNC) has been proven effective in improving patients with acute hypoxemic respiratory failure (AHRF), but a discussion of its use for initial flow settings still need to be provided. We aimed to compare the effectiveness and comfort evaluation of HFNC with different initial flow settings in patients with AHRF. METHODS: Studies published by October 10, 2022, were searched exhaustively in PubMed, Embase, Web of Science, Cochrane Library (CENTRAL), and the China National Knowledge Infrastructure (CNKI) database. Network meta-analysis (NMA) was performed with STATA 17.0 and R software (version 4.2.1). A Bayesian framework was applied for this NMA. Comparisons of competing models based on the deviance information criterion (DIC) were used to select the best model for NMA. The primary outcome is the intubation at day 28. Secondary outcomes included short-term and long-term mortality, comfort score, length of ICU or hospital stay, and 24-h PaO2/FiO2. RESULTS: This NMA included 23 randomized controlled trials (RCTs) with 5774 patients. With NIV as the control, the HFNC_high group was significantly associated with lower intubation rates (odds ratio [OR] 0.72 95% credible interval [CrI] 0.56 to 0.93; moderate quality evidence) and short-term mortality (OR 0.81 95% CrI 0.69 to 0.96; moderate quality evidence). Using HFNC_Moderate (Mod) group (mean difference [MD] - 1.98 95% CrI -3.98 to 0.01; very low quality evidence) as a comparator, the HFNC_Low group had a slight advantage in comfort scores but no statistically significant difference. Of all possible interventions, the HFNC_High group had the highest probability of being the best in reducing intubation rates (73.04%), short-term (82.74%) and long-term mortality (67.08%). While surface under the cumulative ranking curve value (SUCRA) indicated that the HFNC_Low group had the highest probability of being the best in terms of comfort scores. CONCLUSIONS: The high initial flow settings (50-60 L/min) performed better in decreasing the occurrence of intubation and mortality, albeit with poor comfort scores. Treatment of HFNC for AHRF patients ought to be initiated from moderate flow rates (30-40 L/min), and individualized flow settings can make HFNC more sensible in clinical practice.

2.
Transportation Research Part A: Policy and Practice ; 173:103690, 2023.
Article in English | ScienceDirect | ID: covidwho-2309590

ABSTRACT

Ridesplitting – a type of ride-hailing in which riders share vehicles with other riders – has become a common travel mode in some major cities. This type of shared ride option is currently provided by transportation network companies (TNCs) such as Uber, Lyft, and Via and has attracted increasing numbers of users, particularly before the COVID-19 pandemic. Previous findings have suggested ridesplitting can lower travel costs and even lessen congestion by reducing the number of vehicles needed to move people. Recent studies have also posited that ridesplitting should experience positive feedback mechanisms in which the quality of the service would improve with the number of users. Specifically, these systems should benefit from economies of scale and increasing returns to scale. This paper demonstrates evidence of their existence using trip data reported by TNCs to the City of Chicago between January and September 2019. Specifically, it shows that increases in the number of riders requesting or authorizing shared trips during a given time period is associated with shorter trip detours, higher rates of riders being matched together, lower costs relative to non-shared trips, and higher willingness for riders to share trips.

3.
Autom Constr ; 150: 104846, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2304603

ABSTRACT

Rapid design and construction of mobile cabin hospitals (MCHs) have become imperative in the COVID-19 response. However, due to unique design specifications (e.g., parallel design and model pre-revision), collaboration in emergency construction projects (ECPs) like MCHs presents data security vulnerabilities, including a lack of traceability and transparency. These hazards invariably reduce design effectiveness, leading to undesirable rework and project delay. Blockchain technology is a potential solution to address the aforementioned security issues in ECPs because it offers immutable and traceable data storage. Nevertheless, directly implementing blockchain in ECPs is impractical, for the blockchain has a complex deployment process and provides limited functions supporting BIM-based design. Therefore, this paper develops a lightweight blockchain-as-a-service (LBaaS) prototype to enhance the ECPs design efficiency by securing and automating information exchange while eliminating the difficulties of deploying and using blockchain. This paper contributes three elements: (1) Security vulnerabilities of design in ECP are identified. Taking an MCH in Hong Kong as an example, this paper investigates its design process and determines two design characteristics and associated security flaws. (2) Key technologies to support easy deployment and usage of blockchain in ECPs are developed. New technical elements, including a Multi-to-One mapping (MtOM) kit for easy blockchain registration, an integrated workflow retaining existing design practices, and smart contracts for secure interaction with blockchain, are developed to support LBaaS functionality. (3) An LBaaS prototype is validated and evaluated. The prototype is illustrated and evaluated using design examples based on actual MCH project data. Results show that the LBaaS is a feasible and secure approach for ECPs collaboration. This paper deepens the understanding of data security issues in ECPs and offers technical guidance in establishing blockchain solutions.

4.
Engineering (Beijing) ; 2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-2288770

ABSTRACT

Xuanfeibaidu Formula (XFBD) is a Chinese medicine used in the clinical treatment of coronavirus disease 2019 (COVID-19) patients. Although XFBD has exhibited significant therapeutic efficacy in clinical practice, its underlying pharmacological mechanism remains unclear. Here, we combine a comprehensive research approach that includes network pharmacology, transcriptomics, and bioassays in multiple model systems to investigate the pharmacological mechanism of XFBD and its bioactive substances. High-resolution mass spectrometry was combined with molecular networking to profile the major active substances in XFBD. A total of 154 compounds were identified or tentatively characterized, including flavonoids, terpenes, carboxylic acids, and other types of constituents. Based on the chemical composition of XFBD, a network pharmacology-based analysis identified inflammation-related pathways as primary targets. Thus, we examined the anti-inflammation activity of XFBD in a lipopolysaccharide-induced acute inflammation mice model. XFBD significantly alleviated pulmonary inflammation and decreased the level of serum proinflammatory cytokines. Transcriptomic profiling suggested that genes related to macrophage function were differently expressed after XFBD treatment. Consequently, the effects of XFBD on macrophage activation and mobilization were investigated in a macrophage cell line and a zebrafish wounding model. XFBD exerts strong inhibitory effects on both macrophage activation and migration. Moreover, through multimodal screening, we further identified the major components and compounds from the different herbs of XFBD that mediate its anti-inflammation function. Active components from XFBD, including Polygoni cuspidati Rhizoma, Phragmitis Rhizoma, and Citri grandis Exocarpium rubrum, were then found to strongly downregulate macrophage activation, and polydatin, isoliquiritin, and acteoside were identified as active compounds. Components of Artemisiae annuae Herba and Ephedrae Herba were found to substantially inhibit endogenous macrophage migration, while the presence of ephedrine, atractylenolide, and kaempferol was attributed to these effects. In summary, our study explores the pharmacological mechanism and effective components of XFBD in inflammation regulation via multimodal approaches, and thereby provides a biological illustration of the clinical efficacy of XFBD.

5.
Biomaterials ; 296: 122075, 2023 05.
Article in English | MEDLINE | ID: covidwho-2289063

ABSTRACT

Skin-interfaced electronics (skintronics) have received considerable attention due to their thinness, skin-like mechanical softness, excellent conformability, and multifunctional integration. Current advancements in skintronics have enabled health monitoring and digital medicine. Particularly, skintronics offer a personalized platform for early-stage disease diagnosis and treatment. In this comprehensive review, we discuss (1) the state-of-the-art skintronic devices, (2) material selections and platform considerations of future skintronics toward intelligent healthcare, (3) device fabrication and system integrations of skintronics, (4) an overview of the skintronic platform for personalized healthcare applications, including biosensing as well as wound healing, sleep monitoring, the assessment of SARS-CoV-2, and the augmented reality-/virtual reality-enhanced human-machine interfaces, and (5) current challenges and future opportunities of skintronics and their potentials in clinical translation and commercialization. The field of skintronics will not only minimize physical and physiological mismatches with the skin but also shift the paradigm in intelligent and personalized healthcare and offer unprecedented promise to revolutionize conventional medical practices.


Subject(s)
COVID-19 , Wearable Electronic Devices , Humans , SARS-CoV-2 , Electronics , Delivery of Health Care
6.
Front Public Health ; 11: 1043485, 2023.
Article in English | MEDLINE | ID: covidwho-2269283

ABSTRACT

Objective: To investigate the relationship among information processing, risk/benefit perception and the COVID-19 vaccination intention of OHCs users with the heuristic-systematic model (HSM). Methods: This study conducted a cross-sectional questionnaire via an online survey among Chinese adults. A structural equation model (SEM) was used to examine the research hypotheses. Results: Systematic information processing positively influenced benefit perception, and heuristic information processing positively influenced risk perception. Benefit perception had a significant positive effect on users' vaccination intention. Risk perception had a negative impact on vaccination intention. Findings revealed that differences in information processing methods affect users' perceptions of risk and benefit, which decide their vaccination intention. Conclusion: Online health communities can provide more systematic cues and users should process information systematically to increase their perceived benefits, consequently increase their willingness to receive COVID-19 vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Cross-Sectional Studies , Intention , COVID-19/prevention & control , Vaccination , Perception
7.
Displays ; 77: 102370, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2165219

ABSTRACT

The Corona Virus Disease 2019 (COVID-19) has been declared a worldwide pandemic, and a key method for diagnosing COVID-19 is chest X-ray imaging. The application of convolutional neural network with medical imaging helps to diagnose the disease accurately, where the label quality plays an important role in the classification problem of COVID-19 chest X-rays. However, most of the existing classification methods ignore the problem that the labels are hardly completely true and effective, and noisy labels lead to a significant degradation in the performance of image classification frameworks. In addition, due to the wide distribution of lesions and the large number of local features of COVID-19 chest X-ray images, existing label recovery algorithms have to face the bottleneck problem of the difficult reuse of noisy samples. Therefore, this paper introduces a general classification framework for COVID-19 chest X-ray images with noisy labels and proposes a noisy label recovery algorithm based on subset label iterative propagation and replacement (SLIPR). Specifically, the proposed algorithm first obtains random subsets of the samples multiple times. Then, it integrates several techniques such as principal component analysis, low-rank representation, neighborhood graph regularization, and k-nearest neighbor for feature extraction and image classification. Finally, multi-level weight distribution and replacement are performed on the labels to cleanse the noise. In addition, for the label-recovered dataset, high confidence samples are further selected as the training set to improve the stability and accuracy of the classification framework without affecting its inherent performance. In this paper, three typical datasets are chosen to conduct extensive experiments and comparisons of existing algorithms under different metrics. Experimental results on three publicly available COVID-19 chest X-ray image datasets show that the proposed algorithm can effectively recover noisy labels and improve the accuracy of the image classification framework by 18.9% on the Tawsifur dataset, 19.92% on the Skytells dataset, and 16.72% on the CXRs dataset. Compared to the state-of-the-art algorithms, the gain of classification accuracy of SLIPR on the three datasets can reach 8.67%-19.38%, and the proposed algorithm also has certain scalability while ensuring data integrity.

8.
Front Public Health ; 10: 972348, 2022.
Article in English | MEDLINE | ID: covidwho-2154842

ABSTRACT

Background: More than 70 percent of the world's population is tortured with neck pain more than once in their vast life, of which 50-85% recur within 1-5 years of the initial episode. With medical resources affected by the epidemic, more and more people seek health-related knowledge via YouTube. This article aims to assess the quality and reliability of the medical information shared on YouTube regarding neck pain. Methods: We searched on YouTube using the keyword "neck pain" to include the top 50 videos by relevance, then divided them into five and seven categories based on their content and source. Each video was quantitatively assessed using the Journal of American Medical Association (JAMA), DISCERN, Global Quality Score (GQS), Neck Pain-Specific Score (NPSS), and video power index (VPI). Spearman correlation analysis was used to evaluate the correlation between JAMA, GQS, DISCERN, NPSS and VPI. A multiple linear regression analysis was applied to identify video features affecting JAMA, GQS, DISCERN, and NPSS. Results: The videos had a mean JAMA score of 2.56 (SD = 0.43), DISCERN of 2.55 (SD = 0.44), GQS of 2.86 (SD = 0.72), and NPSS of 2.90 (SD = 2.23). Classification by video upload source, non-physician videos had the greatest share at 38%, and sorted by video content, exercise training comprised 40% of the videos. Significant differences between the uploading sources were observed for VPI (P = 0.012), JAMA (P < 0.001), DISCERN (P < 0.001), GQS (P = 0.001), and NPSS (P = 0.007). Spearman correlation analysis showed that JAMA, DISCERN, GQS, and NPSS significantly correlated with each other (JAMA vs. DISCERN, p < 0.001, JAMA vs. GQS, p < 0.001, JAMA vs. NPSS, p < 0.001, DISCERN vs. GQS, p < 0.001, DISCERN vs. NPSS, p < 0.001, GQS vs. NPSS, p < 0.001). Multiple linear regression analysis suggested that a higher JAMA score, DISCERN, or GQS score were closely related to a higher probability of an academic, physician, non-physician or medical upload source (P < 0.005), and a higher NPSS score was associated with a higher probability of an academic source (P = 0.001) than of an individual upload source. Conclusions: YouTube videos pertaining to neck pain contain low quality, low reliability, and incomplete information. Patients may be put at risk for health complications due to inaccurate, and incomplete information, particularly during the COVID-19 crisis. Academic groups should be committed to high-quality video production and promotion to YouTube users.


Subject(s)
COVID-19 , Social Media , Humans , Information Dissemination , Pain , Patient Education as Topic , Reproducibility of Results , United States , Video Recording
9.
Composites Communications ; : 101445, 2022.
Article in English | ScienceDirect | ID: covidwho-2130502

ABSTRACT

The hazards of epoxy resin (EP) are not only reflected in the large amount of smoke and heat released during combustion, but also in the long survival time of bacterial on their surfaces at a time when COVID-19 are prevalent. Therefore, it is crucial to improve the antibacterial properties and fire-resistance of EP. Herein, this paper reports a multifunctional nanoparticle (Cu2O@KF) to overcome this issue. It is found that Cu2O@KF can confer great fire-resistance (LOI = 34.7% and pHRR reduced by 56.3%), antibacterial properties (over 99.99% antibacterial efficiency), and mechanical properties (hardness and Young's modulus increased by 80.0% and 24.0%, respectively) at a low loading level (7wt.%). These ideal characteristics are derived from the multi-synergistic properties among Cu2O and KF.

10.
View ; 3(5), 2022.
Article in English | ProQuest Central | ID: covidwho-2128325

ABSTRACT

[...]their cumbersome equipment, ergonomic discomfort, and episodic treatment hinder mobile, comfortable, real-time, and long-term monitoring. [...]the insufficient, inconvenient, and inaccurate medical services of the conventional healthcare system inevitably cause overloaded patient populations, skyrocketing expenditures, and medical burdens, especially for the still-ongoing COVID-19. Compared to routine healthcare models, skin-like devices cannot only reduce the cost of clinical interventions but also monitor a variety of physiological conditions in a real-time, comfortable, and long-term transformative manner. [...]skin-like devices for health management have more advantages than traditional healthcare and are considered essential for efficient health maintenance and disease treatment. In addition to phototherapy, electrotherapy, thermotherapy and drug delivery approaches, E et al. introduced three new electromagnetic therapeutics to treat cancer cells that are quite different from normal cells in volume, water content, and differentiation.

11.
Frontiers in psychiatry ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2092669

ABSTRACT

Background The COVID-19 pandemic has had a wide range of behavioral and psychological effects on the general population. This study examined the relationship between fear of COVID-19, daily smartphone use, sleep disturbance, and depression in the general population during the early stage of COVID-19. Methods An online nation-wide survey was conducted from March 20 to April 10, 2020. Sociodemographic information, including age, gender, educational attainment, vocation, and duration of self-isolation, was collected;fear of COVID-19 and other objective exposures, daily hours of smartphone use, night sleep duration, sleep disturbance, and depressive symptoms were measured with structured questions and PHQ-9. There were 1,280 questionnaires in total, and 1,250 valid questionnaires remained. Results The prevalence of sleep disturbance and depression were found to be 13.1 and 10.7%, respectively. Feelings of extreme fear, longer smartphone use, difficulty initiating sleep, and early morning awakening were significant risk factors for depression. Daily hours of smartphone use, difficulty initiating sleep, and early morning awakening partially mediated the association between feeling extremely scared of the pandemic and depression. Conclusion Psychological interventions in a major public health crisis should focus more on the subjective perception of pandemic fear. At the same time, daily smartphone use and sleep disturbances could serve as targets for monitoring and intervention for depression during a pandemic.

12.
Frontiers in psychology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2092466

ABSTRACT

With the rapid development of the Internet and the normalization of COVID-19 epidemic prevention and control, Online health communities (OHCs) have gradually become one of the important ways for people to obtain health information, and users have to go through a series of information processing when facing the massive amount of data. Understanding the factors influencing user information processing is necessary to promote users’ health literacy, health knowledge popularization and health behavior shaping. Based on the Heuristic-Systematic Model (HSM), Information Ecology Theory, Privacy Trade-Off and Self-Efficacy Theory, we constructed a model of factors influencing user information processing in online health communities. We found that information quality and emotional support had indirect effects on heuristic and systematic information processing, and these effects were mediated by privacy concerns and self-efficacy. In our research model, systematic information processing was most positively influenced directly by self-efficacy. Privacy concerns had a direct negative correlation with both dual information processing pathways. Therefore, OHCs managers should develop relevant regulations to ensure the information quality in OHCs and improve privacy protection services to promote user information processing by improving users’ self-efficacy and reducing their privacy concerns. Providing a user-friendly and interactive environment for users is also recommended to create more emotional support, thus facilitating more systematic information processing.

13.
Automation in Construction ; 144:104625, 2022.
Article in English | ScienceDirect | ID: covidwho-2082779

ABSTRACT

Effective environmental condition monitoring provides constant surveillance of the built environment and reveals deteriorations that could impact the daily operation of facilities, especially amid COVID situations. However, the current Industry Foundation Classes (IFC) data schema for Building Information Modelling (BIM) provided limited support to represent full semantics related to environmental sensing and monitoring. How to semantically enrich the IFC schema with enhanced data description capability for informed decision-making in smart facilities management (FM) amid COVID situations remains an open question. This paper develops a semi-automatic extension and integration of IFC data schema with Sensor Model Language (SensorML) specification in order to support automated built environment sensing and monitoring. Referring to SensorML, an extended IFC model view definition for a comprehensive description of required sensor metadata and sensing entities is presented. An Internet of Things (IoT) sensor network is then established to realise continuous data collection from a variety of wireless sensing devices. The spatial-temporal data captured by the IoT sensor network are extracted by a regular expression-based data distillation algorithm and integrated with the digital twin, in which spatial interpolation algorithms further analyse, compute, and visualise the state of the environment. The proposed method is demonstrated via an experimental study which supports real-time environmental monitoring and delivers more actionable insights to facility managers to sustain the daily operation of buildings. This study contributes new methods and models to semantically enrich the digital twin from the data perspective for environmental condition monitoring during the pandemic time which fosters the development of holistic building facility management.

14.
J Virol ; 96(20): e0131822, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2053123

ABSTRACT

Pseudorabies virus (PRV), which is extremely infectious and can infect numerous mammals, has a risk of spillover into humans. Virus-host interactions determine viral entry and spreading. Here, we showed that neuropilin-1 (NRP1) significantly potentiates PRV infection. Mechanistically, NRP1 promoted PRV attachment and entry, and enhanced cell-to-cell fusion mediated by viral glycoprotein B (gB), gD, gH, and gL. Furthermore, through in vitro coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays, NRP1 was found to physically interact with gB, gD, and gH, and these interactions were C-end Rule (CendR) motif independent, in contrast to currently known viruses. Remarkably, we illustrated that the viral protein gB promotes NRP1 degradation via a lysosome-dependent pathway. We further demonstrate that gB promotes NRP1 degradation in a furin-cleavage-dependent manner. Interestingly, in this study, we generated gB furin cleavage site (FCS)-knockout PRV (Δfurin PRV) and evaluated its pathogenesis; in vivo, we found that Δfurin PRV virulence was significantly attenuated in mice. Together, our findings demonstrated that NRP1 is an important host factor for PRV and that NRP1 may be a potential target for antiviral intervention. IMPORTANCE Recent studies have shown accelerated PRV cross-species spillover and that PRV poses a potential threat to humans. PRV infection in humans always manifests as a high fever, tonic-clonic seizures, and encephalitis. Therefore, understanding the interaction between PRV and host factors may contribute to the development of new antiviral strategies against PRV. NRP1 has been demonstrated to be a receptor for several viruses that harbor CendR, including SARS-CoV-2. However, the relationships between NRP1 and PRV are poorly understood. Here, we found that NRP1 significantly potentiated PRV infection by promoting PRV attachment and enhanced cell-to-cell fusion. For the first time, we demonstrated that gB promotes NRP1 degradation via a lysosome-dependent pathway. Last, in vivo, Δfurin PRV virulence was significantly attenuated in mice. Therefore, NRP1 is an important host factor for PRV, and NRP1 may be a potential target for antiviral drug development.


Subject(s)
COVID-19 , Herpesvirus 1, Suid , Pseudorabies , Mice , Humans , Animals , Herpesvirus 1, Suid/metabolism , Neuropilin-1/genetics , Neuropilin-1/metabolism , Furin/metabolism , SARS-CoV-2 , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virus Replication , Viral Proteins/metabolism , Antiviral Agents/metabolism , Mammals
15.
Energy ; : 125513, 2022.
Article in English | ScienceDirect | ID: covidwho-2041728

ABSTRACT

The low-carbon development of air transport industry is of great significance for China to achieve the commitment of carbon peak and carbon neutrality goals. In order to improve the basic data of aviation CO2 emissions, this study continuously collected full flight information in China from January 2017 to December 2020, and established a flight information database and an aircraft-engine parameter database. On the basis of IPCC's Tier 3B accounting method, this study established a long-term aviation CO2 emissions inventory of China from 2017 to 2020 by calculating and accumulating CO2 emissions of each flight. And aviation CO2 emissions of various provinces and cities in China were calculated combined with spatial allocation method. The results showed that aviation CO2 emissions in China was 104.1, 120.1, 136.9, and 88.3 Mt in 2017, 2018, 2019, and 2020, respectively, with annual growth rates of 15.4%, 14.0%, and −35.3% in 2018, 2019, and 2020, respectively. Affected by the COVID-19 pandemic, aviation CO2 emissions in all 31 provinces and 93% of cities decreased in 2020 compared with 2019. China is in the stage of rapid development of air transport industry, and aviation fossil energy consumption and CO2 emissions have continued to grow in recent years.

16.
Chemosphere ; 308(Pt 1): 136309, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2007585

ABSTRACT

In recent years, the break of COVID-19 makes the large use of disposable products, which causes the removal of microplastics become an imperative problem. Electrocoagulation is one of the effective removal technologies, but there is hardly research concentrating on the effect of substrate in the actual water on the microplastics removal with electrocoagulation. As an important role of water bodies, dissolved organic matter (DOM) has a vital and inevitable effect on the efficiency of electrocoagulation. In this study, the effect of DOM in tailwater on microplastics during electrocoagulation is elucidated by comparing the electrocoagulation treatment results between simulated wastewater and tailwater, using parallel factor analysis (PARAFAC), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectrometer (FTIR) and zeta potential analyzer. Three kinds of microplastic particles (i.e. polypropylene, polyethylene, and polymethyl methacrylate) were added into each of the two kinds of wastewaters to form six electrocoagulation systems. Results show that DOM in tailwater promotes the production of flocs and free radicals during electrocoagulation process. Fe2+ and Fe3+ are adsorbed on the surface of DOM molecules and combined with •OH form flocs. Although DOM accelerates the production of free radicals and thus promotes the aging of microplastics, flocs with DOM as crystal nucleus can prevent toxic substances and small-sized microplastics from leaching into water again. Therefore, electrocoagulation is preferred to removal microplastics in water with high concentration of DOM. This study provides a significant reference for microplastics removal by electrocoagulation in actual water, and promote the practical application of electrocoagulation for microplastics removal in water treatment.


Subject(s)
COVID-19 , Microplastics , Dissolved Organic Matter , Electrocoagulation , Humans , Plastics , Polyethylene , Polymethyl Methacrylate , Polypropylenes , Wastewater
17.
Sustainability ; 14(15):9786, 2022.
Article in English | ProQuest Central | ID: covidwho-1994206

ABSTRACT

This study examines the relationship between sustainable financing and financial risk management of Chinese financial institutions, using data from Chinese banks. Financial risk management is a comprehensive measure of operating performance, asset quality and capital adequacy ratio. The structural vector auto-regression model determines the relationship between two variables. The positive shock of sustainable financing business negatively impacts the financial risk management of banks. In contrast, positive shock of banks’ financial risk management positively affects sustainable financing. Further subdivision of the sample revealed that sustainable financing does not always negatively impact the financial risk management of large state-owned banks. However, the positive shock of financial risk management reduces urban banks’ green credit proportions. The results are consistent whenever compared between the empirical outcome of the entire sample and the sample consisting of national joint stock bank accounts. This comparison helps eliminate the possibility of a biased outcome as a major portion of the sample is from a national joint-stock bank account. Apart from data limitations, the results of the sub-sample test are influenced due to the difference in deposit and loan interest rates, as well as different ownership structures of banks.

18.
Vaccines (Basel) ; 10(8)2022 Aug 17.
Article in English | MEDLINE | ID: covidwho-1988074

ABSTRACT

(1) Objective: To explore Chinese residents' willingness to receive COVID-19 vaccine booster shots and identify predictors of the level of willingness based on the health belief model (HBM). (2) Methods: The snowball sampling method was used to distribute online questionnaires. A chi-square test was used to analyze the relationship between different variables. The causal relationship between HBM-related factors and booster vaccination intentions was explored by Structural equation modeling (SEM). (3) Results: A total of 898 complete responses were included; 64.3% had already received the booster injection. Most respondents intended to vaccinate themselves, while 16.1% were hesitant. Nearly half of the respondents chose to take the booster injection to support China's vaccination policy. Using the SEM, perceived susceptibility and perceived barriers were found to have a negative effect on booster vaccination intentions, whereas perceived benefit and cues to action positively affected booster vaccination intentions in the HBM. (4) Conclusions: Factors included in this study have different effects on the willingness to take the COVID-19 booster injections. Sociodemographic characteristics and characteristics of participants' COVID-19 vaccination have a significant effect on the willingness to receive vaccine booster shots. The HBM constructs can serve as good predictors of the acceptance of vaccine booster shots with the exception of perceived severity, which may benefit health officials in terms of conducting targeted strategies in vaccine programs.

19.
Stud Health Technol Inform ; 290: 617-621, 2022 Jun 06.
Article in English | MEDLINE | ID: covidwho-1933568

ABSTRACT

Sample size is an important indicator of the power of randomized controlled trials (RCTs). In this paper, we designed a total sample size extractor using a combination of syntactic and machine learning methods, and evaluated it on 300 Covid-19 abstracts (Covid-Set) and 100 generic RCT abstracts (General-Set). To improve the performance, we applied transfer learning from a large public corpus of annotated abstracts. We achieved an average F1 score of 0.73 on the Covid-Set testing set, and 0.60 on the General-Set using exact matches. The F1 scores for loose matches on both datasets were over 0.74. Compared with the state-of-the-art tool, our extractor reports total sample sizes directly and improved F1 scores by at least 4% without transfer learning. We demonstrated that transfer learning improved the sample size extraction accuracy and minimized human labor on annotations.


Subject(s)
COVID-19 , COVID-19/epidemiology , Humans , Machine Learning , Natural Language Processing , Randomized Controlled Trials as Topic , Sample Size
20.
Stud Health Technol Inform ; 294: 392-396, 2022 May 25.
Article in English | MEDLINE | ID: covidwho-1865422

ABSTRACT

Anecdotally, 38.5% of clinical outcome descriptions in randomized controlled trial publications contain complex text. Existing terminologies are insufficient to standardize outcomes and their measures, temporal attributes, quantitative metrics, and other attributes. In this study, we analyzed the semantic patterns in the outcome text in a sample of COVID-19 trials and presented a data-driven method for modeling outcomes. We conclude that a data-driven knowledge representation can benefit natural language processing of outcome text from published clinical studies.


Subject(s)
COVID-19 , Humans , Natural Language Processing , Semantics
SELECTION OF CITATIONS
SEARCH DETAIL